Neural Networks in Chinese Lexical Classification

نویسندگان

  • Md Maruf Hasan
  • Kim-Teng Lua
چکیده

Lexical attributes, like syntactic (part-of-speech) and semantic (semantic category) attributes, are in most cases, ambiguous in every languages. Automatic resolution of ambiguity of these attributes can be achieved using different techniques; rule-based, statistical, NN-based and their hybrids. Moreover, one linguistic feature also has influence over the resolution of ambiguity of another feature; eg.. knowledge of syntactical category can assist smooth disambiguation of semantic category and vice versa. Properly disambiguated syntactic and semantic properties of lexicon may significantly help us in word sense disambiguation, text analysis, information retreival, natural language understanding and speech processing etc. In this paper, we have presented our neural network based Classification Tool. We have used this tool in Part-of-Speech tagging and SemanticCategory tagging of Chinese lexicon with the help of thesaurus and large training corpus. Experimental results are analysed and compared.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of sound classification by neural networks in the recognition of human hearing

In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...

متن کامل

Chinese Poetry Generation with Recurrent Neural Networks

We propose a model for Chinese poem generation based on recurrent neural networks which we argue is ideally suited to capturing poetic content and form. Our generator jointly performs content selection (“what to say”) and surface realization (“how to say”) by learning representations of individual characters, and their combinations into one or more lines as well as how these mutually reinforce ...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

Vocabulary Development in English and Chinese: A Comparative Study with Self-Organizing Neural Networks

In this paper we present a self-organizing neural network model to simulate the early vocabulary development in English and Chinese. We focus on how the different lexical composition patterns in the two languages can emerge, develop and change when the learner acquires an increasing number of words. Our results suggest that certain lexical characteristics in the linguistic input (e.g., word fre...

متن کامل

Application of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images

Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996